Skip to main content

Som S. Chatterjee, PhD

Academic Title:

Assistant Professor

Primary Appointment:

University of Maryland School of Dentistry

Secondary Appointment(s):

Microbiology and Immunology

Location:

701 E Pratt Street, Baltimore, MD 21202

Phone (Primary):

410-234-8890

Education and Training

PhD, 2006 Institute for Medical Microbiology, Justus-Liebig University (JLU), Giessen, Germany

MS, 2001 Department of Bio-physics & Molecular Biology, University College of Science & Technology, Kolkata, India

BS, 1999 Department of Zoology, Dinabandhu Andrews College, Kolkata, India

Biosketch

Dr. Chatterjee received his master’s degree from the Department of Biophysics and Molecular Biology, University of Kolkata (Calcutta), India. He then went on to perform his doctoral studies in the laboratory of Dr. Trinad Chakraborty in Justus-Liebig University, Germany where he studied the infection process of Listeria monocytogenes, an intracellular pathogen that is responsible for causing food-borne illnesses.

After completing his PhD, he joined Dr. Michael Otto’s group at the National Institutes of Health (NIH) to study the secretion process of a group of cytolytic peptide toxins called Phenol Soluble Modulins (PSMs) in S. aureus. In 2014, Dr. Chatterjee joined Dr. Henry Chambers’ group at University of California, San Francisco (UCSF) to study the major public health problem of antimicrobial resistance in S. aureus. In 2015, he became an Assistant Adjunct Professor at UCSF.

In January of 2019, Dr. Chatterjee joined the faculty at the University of Maryland, Baltimore. He is a member of the UMB School of Dentistry Department of Microbial Pathogenesis. He is currently based at the Institute of Marine and Environmental Technology (IMET), where he continues to investigate antimicrobial resistance in S. aureus.  Research in the Chatterjee lab is funded through grants from the National Institutes of Health (R01 and R21) and through University Systems of Maryland (seed funding).

Research/Clinical Keywords

Staphylococcus aureus

Highlighted Publications

  1. Basuino L, Jousselin A, Alexander JAN, Strynadka NCJ, Pinho MG, Chambers HF, Chatterjee SS. 2018. PBP4 activity and its overexpression are necessary for PBP4-mediated high-level beta-lactam resistance. J Antimicrob Chemother doi:10.1093/jac/dkx531.
  2. Chatterjee SS, Chen L, Gilbert A, da Costa TM, Nair V, Datta SK, Kreiswirth BN, Chambers HF. 2017. PBP4 mediates β-lactam resistance by altered function. Antimicrob Agents Chemother doi: 10.1128/AAC.00932-17.
  3. Greninger AL, Chatterjee SS, Chan LC, Hamilton SM, Chambers HF, Chiu CY. 2016. Whole-Genome Sequencing of Methicillin-Resistant Staphylococcus aureus Resistant to Fifth-Generation Cephalosporins Reveals Potential Non-mecA Mechanisms of Resistance. PLoS One 11:e0149541.
  4. Alexander JAN, Chatterjee SS, Hamilton SM, Eltis LD, Chambers HF, Strynadka NCJ. Structural and kinetic analyses of penicillin-binding protein 4 (PBP4)-mediated antibiotic resistance in Staphylococcus aureusJ Biol Chem. 2018 Dec 21;293(51):19854-19865. doi: 10.1074/jbc.RA118.004952.
  5. da Costa TM, de Oliveira CR, Chambers HF, Chatterjee SS. PBP4: A New Perspective on Staphylococcus aureus β-Lactam Resistance. Microorganisms. 2018 Jun 22;6(3). doi: 10.3390/microorganisms6030057.

Complete list of publications

Research Interests

Awards and Affiliations

Grants and Contracts

Links of Interest

Chatterjee Laboratory

×