Skip to main content

New Study Reveals Insights into Lack of Durability in COVID Antibody Response to Infections & Vaccines

March 20, 2024 | Jennifer Gonzales


Photo: Co-authors, George Lewis, PhD (left) and Mohammad Sajadi, PhD are researchers at the Institute of Human Virology (IHV)

Researchers at the IHV at the UMSOM published a new study in the Journal of Infectious Diseases investigating the short-lived antibody response following SARS-CoV-2, the virus that causes COVID.

Long-lived plasma cells are responsible for durable antibody responses that persist for decades after immunization or infection.  For example, infection with measles, mumps, rubella, or immunization with vaccines against these contagions elicit antibody responses that can last for years or decades.  By contrast, immunity against COVID from either a natural infection or a vaccine confers a much shorter-lived antibody response, only up to a few years at most. The mechanism underlying this problem, however, remained unknown. 

“We know long-lived plasma cells can produce antibodies against specific pathogens for decades, so we wanted to investigate their role in COVID infection,” said study co-author Mohammad Sajadi, MD, Associate Professor of Medicine, Division of Clinical Care and Research, Institute of Human Virology.

The study by Dr. Sajadi and his colleagues examined the contribution of long-lived plasma cells in the bone marrow to anti-spike antibodies after COVID infection.  They studied 20 individuals with a history of COVID infection but no vaccination. Bone marrow aspirates and plasma samples were analyzed to characterize antibody responses. The research found a deficient generation of spike-specific long-lived plasma cells in the bone marrow, offering insight into the short duration of antibody responses observed in recovering COVID patients.

George Lewis, PhD“The rapid waning of spike-specific antibodies we observed indicates a lack of durable antibody production after natural infection,” said study co-author George Lewis, PhD, director of the Division of Vaccine Research, Institute of Human Virology. “This appears to be due to insufficient generation of long-lived plasma cells that would sustain antibody levels, a phenomenon we’ve noted before with certain viruses.”

Ten years ago, the researchers discussed the possible mechanisms for this problem with regards to HIV in a peer-reviewed publication and have been working on it since. (Like COVID vaccines, experimental HIV vaccines also confer short-lived immunity.) Their work on the poor persistence of antibody responses to the SARS-CoV-2 spike protein shows that the antibody persistence problem extends to COVID as well and that it is likely due to lack of long-lived antibody-secreting cells in the bone marrow.

Shyam Kottilil, MBBS, PhDShyam Kottilil, PhD, Interim IHV Director, added, “Sustained antibody responses to viral infections are critical for vaccine development and long-term immunity. The presence of long-lived plasma cells in bone marrow is a crucial component for the generation of prolonged effective antiviral immunity. This study by Drs. Sajadi and Lewis and colleagues provide vital information about protracted immunity to COVID, which is a breakthrough in our understanding of antiviral immunity due to COVID and other viruses.” 

The researchers say the findings will help inform the development of vaccines and therapeutics that can induce robust long-term antibody production against SARS-CoV-2 and HIV. New studies have been designed in people to work out the cellular and molecular basis of this problem.

Mark T. Gladwin, MD“This intriguing new study provides a possible explanation for why antibody responses to SARS-CoV-2 decay quickly,” said Mark T. Gladwin, MD, who is the John Z. and Akiko K. Bowers Distinguished Professor and Dean of UMSOM, and Vice President for Medical Affairs at University of Maryland, Baltimore. “Future studies will be key to further investigate the cellular and molecular basis of why SARS-CoV-2 does not elicit long lived antibody secreting cells specific for the SARS-CoV-2 spike protein with the ultimate goal of correcting this deficit in future vaccine designs.” 

The team aims to secure further funding to continue pursuing this critical area of vaccine research.

“We were fortunate to be able to study this problem in context of first exposure to a new human pathogen and disease,” said Dr. Sajadi. “We are grateful to our volunteer participants and colleagues, especially co-first authors Drs. Zahra Rikhtegaran Tehrani and Parham Habibzadeh, as well as Robin Flinko, whose efforts made this impactful study possible.”

About the Institute of Human Virology

Formed in 1996 as a partnership between the State of Maryland, the City of Baltimore, the University System of Maryland, and the University of Maryland Medical System, the IHV is an institute of the University of Maryland School of Medicine and is home to some of the most globally-recognized and world-renowned experts in all of virology. The IHV combines the disciplines of basic research, epidemiology, and clinical research in a concerted effort to speed the discovery of diagnostics and therapeutics for a wide variety of chronic and deadly viral and immune disorders, most notably HIV, the virus that causes AIDS. For more information, visit ihv.org and follow us on Twitter @IHVmaryland.

About the University of Maryland School of Medicine

Now in its third century, the University of Maryland School of Medicine was chartered in 1807 as the first public medical school in the United States. It continues today as one of the fastest growing, top-tier biomedical research enterprises in the world -- with 46 academic departments, centers, institutes, and programs, and a faculty of more than 3,000 physicians, scientists, and allied health professionals, including members of the National Academy of Medicine and the National Academy of Sciences, and a distinguished two-time winner of the Albert E. Lasker Award in Medical Research. With an operating budget of more than $1.2 billion, the School of Medicine works closely in partnership with the University of Maryland Medical Center and Medical System to provide research-intensive, academic and clinically based care for nearly 2 million patients each year. The School of Medicine has nearly $600 million in extramural funding, with most of its academic departments highly ranked among all medical schools in the nation in research funding. As one of the seven professional schools that make up the University of Maryland, Baltimore campus, the School of Medicine has a total population of nearly 9,000 faculty and staff, including 2,500 students, trainees, residents, and fellows. The combined School of Medicine and Medical System ("University of Maryland Medicine") has an annual budget of over $6 billion and an economic impact of nearly $20 billion on the state and local community. The School of Medicine, which ranks as the 8th highest among public medical schools in research productivity (according to the Association of American Medical Colleges profile) is an innovator in translational medicine, with 606 active patents and 52 start-up companies. In the latest U.S. News & World Report ranking of the Best Medical Schools, published in 2021, the UM School of Medicine is ranked #9 among the 92 public medical schools in the U.S., and in the top 15 percent (#27) of all 192 public and private U.S. medical schools. The School of Medicine works locally, nationally, and globally, with research and treatment facilities in 36 countries around the world. Visit medschool.umaryland.edu.

Contact

Institute of Human Virology
Jennifer Gonzales
Public Relations & Communications Manager
jennifer.gonzales@ihv.umaryland.edu

Related stories

    Friday, May 20, 2022

    NIH Grant Awarded to Study HIV Drug-Resistant Genetic Mutations Across Africa

    University of Maryland School of Medicine (UMSOM)’s Institute of Human Virology (IHV) researchers received funding from the National Institutes of Health’s National Institute of Allergy and Infectious Diseases (NIAID) for $2.7 million to study genetic changes in two genes from the HIV-1 virus that may make it resistant to antiretroviral therapy. The study, named INSPIRE, will analyze genetic variation in types of HIV circulating in a handful of African countries that will help to better understand the implications of these mutations and will improve clinical management of patients.


    Tuesday, July 06, 2021

    UM School of Medicine Researchers Receive NIH Avant-Garde Award for Out-Of-Box Concept to Cure HIV and Treat Co-Existing Addiction

    Linda Chang, MD, MS, Professor of Diagnostic Radiology & Nuclear Medicine at the University of Maryland School of Medicine (UMSOM), received the National Institute on Drug Abuse (NIDA) 2021 Avant-Garde Award (DP1) for HIV/AIDS and Substance Use Disorder Research — a National Institutes of Health (NIH) Director’s Pioneer Award. This prestigious award supports researchers with exceptional creativity, who propose high-impact research with the potential to be transformative to the field.


    Monday, March 29, 2021

    Cancer Drug Lessens the Toxicity of a Protein from the Virus that Causes Covid-19, UM School of Medicine Study Finds

    University of Maryland School of Medicine (UMSOM) researchers have identified the most toxic proteins made by SARS-COV-2—the virus that causes COVID-19 – and then used an FDA-approved cancer drug to blunt the viral protein’s detrimental effects. In their experiments in fruit flies and human cell lines, the team discovered the cell process that the virus hijacks, illuminating new potential candidate drugs that could be tested for treating severe COVID-19 disease patients. Their findings were published in two studies simultaneously on March 25 in Cell & Bioscience, a Springer Nature journal.


    Thursday, January 21, 2021

    UM School of Medicine Hosted Media Availability for Ensuring Trust in COVID-19 Vaccine Event

    On January 22, 2021 at 2 p.m., the University of Maryland School of Medicine (UMSOM) hosted Black faith-based leaders, COVID-19 research volunteers, and “America’s Doctor,” Anthony Fauci, MD. The event provided straight talk about fears, trust issues, and why we need our Black and Brown community to be a part of COVID-19 vaccine research.


    Tuesday, December 22, 2020

    Largest Study of Its Kind Identifies Which COVID-19 Patients Face the Greatest Risk of Mortality During Hospitalization

    Hospitalized COVID-19 patients have a greater risk of dying if they are men or if they are obese or have complications from diabetes or hypertension, according to a new study conducted by University of Maryland School of Medicine (UMSOM) researchers. In a study published in the journal Clinical Infectious Diseases, the researchers evaluated nearly 67,000 hospitalized COVID-19 patients in 613 hospitals across the country to determine the link between certain common patient characteristics and the risk of dying from COVID-19. Their analysis found that men had a 30 percent higher risk of dying compared to women of the same age and health status. Hospitalized patients who were obese, had hypertension or poorly managed diabetes had a higher risk of dying compared to those who did not have these conditions. Those aged 20 to 39 with these conditions had the biggest difference in their risk of dying compared to their healthier peers.


    Thursday, October 22, 2020

    New Landmark Study at UM School of Medicine Finds Aspirin Use Reduces Risk of Death in Hospitalized COVID-19 Patients

    Hospitalized COVID-19 patients who were taking a daily low-dose aspirin to protect against cardiovascular disease had a significantly lower risk of complications and death compared to those who were not taking aspirin, according to a new study led by researchers at the University of Maryland School of Medicine (UMSOM). Aspirin takers were less likely to be placed in the intensive care unit (ICU) or hooked up to a mechanical ventilator, and they were more likely to survive the infection compared to hospitalized patients who were not taking aspirin, The study, published today in the journal Anesthesia and Analgesia, provides “cautious optimism,” the researchers say, for an inexpensive, accessible medication with a well-known safety profile that could help prevent severe complications.


    Tuesday, June 16, 2020

    UM School of Medicine Researchers Receive Federal Funding to Rapidly Test New Treatments for COVID-19

    Researchers at the University of Maryland School of Medicine (UMSOM) will be partnering on an agreement funded by the federal government’s Defense Advanced Research Projects Agency (DARPA) to rapidly test hundreds of drugs, approved and marketed for other conditions, to see whether any can be repurposed to prevent or treat COVID-19. The compounds will be tested in studies using state-of-the-art technologies in the laboratory of coronavirus researcher Matthew Frieman, PhD., Associate Professor of Microbiology and Immunology at the University of Maryland School of Medicine. UMSOM will receive up to $3.6 million over the next year to fund this effort.


    Monday, June 15, 2020

    UM School of Medicine Researchers Help Identify Potent Antibody Cocktail with Potential to Treat COVID-19

    Researchers at the University of Maryland School of Medicine (UMSOM) evaluated several human antibodies to determine the most potent combination to be mixed in a cocktail and used as a promising anti-viral therapy against the virus that causes COVID-19. Their research, conducted in collaboration with scientists at Regeneron Pharmaceuticals, was published today in the journal Science. The study demonstrates the rapid process of isolating, testing and mass-producing antibody therapies against any infectious disease by using both genetically engineered mice and plasma from recovered COVID-19 patients.


    Tuesday, June 02, 2020

    UM School of Medicine’s Institute of Human Virology Awarded Grants to Strengthen COVID-19 Response in Sub-Saharan Africa

    The Center for International Health, Education and Biosecurity (Ciheb) at the University of Maryland School of Medicine’s Institute of Human Virology was awarded $4 million from the U.S. Centers for Disease Control and Prevention (CDC) to support coronavirus disease 2019 (COVID-19) response activities in Botswana, Nigeria, Malawi, and Mozambique.


    Monday, June 24, 2019

    UM School of Medicine's Institute of Human Virology Awarded $40 Million Grant to Conduct HIV Population Surveys

    Man Charurat, MD, Professor of Medicine, Director, Center for International Health, Education, and Biosecurity (CIHEB), and Director, Division of Epidemiology and Prevention, Institute of Human Virology (IHV) at the University of Maryland School of Medicine (UMSOM), has been awarded a five-year grant from the U.S. Centers for Disease Control and Prevention (CDC) to conduct HIV population-based HIV impact assessments worldwide to measure the progress towards the control of the HIV epidemic


    Wednesday, August 02, 2017

    UM School of Medicine Receives $2 Million Grant for HIV Research in Malawi

    The University of Maryland School of Medicine’s (UM SOM) Institute for Global Health (IGH) and the Institute of Human Virology (IHV) have been awarded a $2 million five-year grant from the Eunice Kennedy Shriver National Institute of Child Health and Human Development to study the impact exposure to HIV has on the immune systems of infants in utero and how those changes impact the ability of infants to fight off infections after birth.


    Tuesday, October 25, 2016

    "A Call to End HIV/AIDS in America" IHV Director Dr. Robert Gallo's Op-Ed in the Huffington Post

    As the new Administration is presented with great challenges facing the United States, one will be a longtime foe, the U.S. HIV/AIDS epidemic. Since President Barack Obama was elected in 2008, I have publicly called on our country’s leaders to utilize the largest global health initiative in history - the President’s Emergency Plan for AIDS Relief (PEPFAR) - as a model to address the U.S. epidemic.