February 10, 2021 | Deborah Kotz
Data Demonstrates New Increased Diversity in Genetic Studies and Provides New Insights into Population-Specific Diseases
Researchers at the University of Maryland School of Medicine (UMSOM) and their colleagues published a new analysis today in the journal Nature from genetic sequencing data of more than 53,000 individuals, primarily from minority populations. The early analysis, part of a large-scale program funded by the National Heart, Lung, and Blood Institute, examines one of the largest and most diverse data sets of high-quality whole genome sequencing, which makes up a person’s DNA. It provides new genetic insights into heart, lung, blood, and sleep disorders and how these conditions impact people with diverse racial and ethnic backgrounds, who are often underrepresented in genetic studies.
The program, called Trans-Omics for Precision Medicine (TOPMed), seeks to understand the genetic variations that occur among individuals both in nuclear families and in populations from diverse ethnicities residing on different continents. The project’s ultimate goal is to improve the diagnosis, treatment, and prevention of the most common conditions that lead to disability or death.
“We have already identified some surprising new insights,” said study corresponding author Timothy O’Connor, PhD, Associate Professor of Medicine & Endocrinology at the Institute for Genome Sciences (IGS) at UMSOM. For example, the team identified more than 400 million genetic variations, but 97 percent of them are extremely rare, occurring in less than one percent of the population. Gene variations or variants can occur by random chance when genes get recombined or mutate.
“Most of the time, these variants mean nothing,” said Dr. O’Connor, “but they can provide a new understanding of mutational processes and recent human evolutionary history.”
The TOPMed team includes more than 180 researchers from leading institutions in genomics worldwide, who have been compiling huge datasets in systematic and defined ways to increase knowledge about diversity in genetic studies. Since its launch in 2014, the TOPMed investigators have begun adding whole genome sequencing and “omics” analysis (which includes a study of genetic and molecular profiles like proteins) to research studies in order to better understand how variations affect different organ systems giving rise to disease in, for example, the heart and lungs.
In the new Nature paper, the researchers pointed out that the program “aims to identify causal genetic variants and how they interact with the environment, to characterize disease and its molecular subtypes, to understand differences in disease across diverse ancestries, and to establish a foundation for personalized disease prediction, prevention, diagnosis, and treatment.” Braxton Mitchell, PhD, Professor of Medicine at UMSOM, and Jeffrey O’Connell, PhD, Associate Professor of Medicine at UMSOM, were co-authors on this paper.
TOPMed is the largest sequencing project to date and has identified over 400 million gene variants with an overarching mission of understanding global genetic diversity. Since joining the TOPMed program in 2016, UMSOM researchers have published valuable new insights on genetic diversity, including sequencing data from the initial flagship paper on the first 53,831 TOPMed samples.
The increasing diversity of the population samples will help investigators learn more about how specific diseases impact different ethnic populations around the world. In addition, the group has established uniform standards for sequencing performed on a massive scale. The standards maximize the integrity of the data as the large group of international researchers use uniform methods as they continue to add other “omics” methods for analysis such as the study of metabolic differences.
In addition to enabling detailed analysis of the combined genomic and health data for sequenced samples, TOPMed has enhanced the analyses of genotyped samples through a new reference panel that now includes over 97,000 individuals. The TOPMed imputation reference panel is publicly available for review and input of new genetic data by researchers.
The first stage of the data release in the Nature study demonstrated a greater inclusion of a diversity of sampling, which will be invaluable to the international group in learning more about the diseases impacting these populations. Because of the vast sample sizes and the longitudinal scope of many of the population samples, the investigators were able to demonstrate that the rare variants represent recent and potentially deleterious changes that can impact protein function, gene expression, or other biologically important elements.
“This is a major effort to rectify the underrepresentation of minority participants in genomic studies and tracks with a broader mission within the School of Medicine to increase diversity in clinical trials,” said E. Albert Reece, MD, PhD, MBA, Executive Vice President for Medical Affairs, UM Baltimore, the John Z. and Akiko K. Bowers Distinguished Professor and Dean, University of Maryland School of Medicine. “This hopefully will move the genomics field closer to extending personalized medicine for all patients.”
Cashell Jaquish, Ph.D., an NHLBI program officer for TOPMed and a corresponding author on the Nature paper, agrees. “The NHLBI’s TOPMed program is a huge resource for the scientific community. We didn’t really know what genomic variation looked like in diverse groups until now. This new study represents truly historic findings, and we look forward to continued research studies in this area as we move toward personalized medicine.”
About the University of Maryland School of Medicine
Now in its third century, the University of Maryland School of Medicine was chartered in 1807 as the first public medical school in the United States. It continues today as one of the fastest growing, top-tier biomedical research enterprises in the world -- with 46 academic departments, centers, institutes, and programs, and a faculty of more than 3,000 physicians, scientists, and allied health professionals, including members of the National Academy of Medicine and the National Academy of Sciences, and a distinguished two-time winner of the Albert E. Lasker Award in Medical Research. With an operating budget of more than $1.2 billion, the School of Medicine works closely in partnership with the University of Maryland Medical Center and Medical System to provide research-intensive, academic and clinically based care for nearly 2 million patients each year. The School of Medicine has nearly $600 million in extramural funding, with most of its academic departments highly ranked among all medical schools in the nation in research funding. As one of the seven professional schools that make up the University of Maryland, Baltimore campus, the School of Medicine has a total population of nearly 9,000 faculty and staff, including 2,500 students, trainees, residents, and fellows. The combined School of Medicine and Medical System (“University of Maryland Medicine”) has an annual budget of over $6 billion and an economic impact of nearly $20 billion on the state and local community. The School of Medicine, which ranks as the 8th highest among public medical schools in research productivity (according to the Association of American Medical Colleges profile) is an innovator in translational medicine, with 606 active patents and 52 start-up companies. In the latest U.S. News & World Report ranking of the Best Medical Schools, published in 2021, the UM School of Medicine is ranked #9 among the 92 public medical schools in the U.S., and in the top 15 percent (#27) of all 192 public and private U.S. medical schools. The School of Medicine works locally, nationally, and globally, with research and treatment facilities in 36 countries around the world. Visit medschool.umaryland.edu
Contact
Deborah Kotz
410-706-4255
dkotz@som.umaryland.edu
Related stories

Thursday, October 12, 2023
New Research Shows How Brain Inflammation in Children May Cause Neurological Disorders Such as Autism or Schizophrenia
Severe inflammation in early childhood is a clinically known risk factor for developing autism and schizophrenia. Now, for the first time, scientists from the University of Maryland School of Medicine (UMSOM) have discovered that inflammation alters the development of vulnerable brain cells, and this could have mechanistic links to neurodevelopmental disorders. This finding could lead to treatments for many different childhood-onset neurodevelopmental disorders.
.jpg)
Wednesday, May 03, 2023
University of Maryland School of Medicine Genomic Scientist Claire M. Fraser Elected to the National Academy of Sciences
The National Academy of Sciences (NAS) has announced that Claire M. Fraser, PhD, the Dean E. Albert Reece Endowed Professor in the Department of Medicine at the University of Maryland School of Medicine (UMSOM), and the Founding Director of the Institute for Genome Sciences (IGS), has been elected as a new member of the prestigious academy. Dr. Fraser is one of 120 U.S. and 23 international new members elected on May 2, 2023 to the NAS, bringing its total U.S. membership to 2,565 members.

Thursday, April 20, 2023
Researchers Discover Unique Genetic Signature for Mood Disorders in the Old Order Amish
Understanding the root causes of depression, bipolar disorder, and other mental illnesses could lead to new treatments for the 300 million people worldwide who suffer from such conditions.
.jpg)
Wednesday, March 01, 2023
Internationally-Renowned Scientist Claire Fraser, PhD, To Step Down as Director of the University of Maryland School of Medicine's Institute for Genome Sciences
Claire Fraser, PhD, a pioneer and global leader in genomic research, has announced that she will step down from her position as Director of the Institute for Genome Sciences (IGS) in the University of Maryland School of Medicine (UMSOM). She will now continue as the Dean E. Albert Reece Endowed Professor and Professor of Medicine and Microbiology and Immunology at UMSOM and scientist at IGS until she retires in 2024.

Friday, January 06, 2023
UM School of Medicine Scientists Create First Extensive Brain Cell Data Repository
Neuroscience researchers now have access to 50 million brain cells to better understand how the brain develops and functions or changes with disease or trauma. Last month, scientists at the University of Maryland School of Medicine’s (UMSOM) Institute for Genome Sciences (IGS) unveiled a “one-stop shop” for brain cell data called the Neuroscience Multi-Omic Archive (NeMO Archive). This archive is now available to neuroscience researchers to transform their understanding of the complex workings of the brain.

Thursday, April 04, 2019
UM School of Medicine's Institute for Genome Sciences Awarded $17.5 Million Grant for Infectious Disease Research
The Institute for Genome Sciences (IGS) at the University of Maryland School of Medicine (UMSOM) was awarded $17.5 million from the National Institute of Allergy and Infectious Diseases (NIAID) to fund the IGS Genome Center for Infectious Diseases (GCID) for another five years.

Thursday, September 27, 2018
University of Maryland School of Medicine Scientist Receives Prestigious Microbiome Award
Owen White, PhD, professor of epidemiology and public health, and Associate Director for Informatics at the Institute for Genome Sciences (IGS) at the University of Maryland School of Medicine (UMSOM), has received the 2018 Microbiome Pioneer Award. The prestigious honor is part of the Bioinformatics for the Microbiome Symposium organized by Stanford University. The microbiome is the name given collectively to the community of trillions of microbial organisms that live on and within our bodies.