Skip to main content

W. Jonathan Lederer, MD, PhD

Academic Title:

Professor

Primary Appointment:

Pharmacology & Physiology

Administrative Title:

Director, Center for Biomedical Engineering & Technology

Additional Title:

Director

Location:

BioMET Building, 111 S. Penn Street, Suite 104

Phone (Primary):

410-706-8181

Fax:

410-510-1545

Education and Training

  • Harvard University, BA, Biochemistry, Magna Cum Laude, 1970
  • Yale University, PhD, Physiology, 1975
  • Yale University, MD, 1976
  • University of Washington, Internship, Medicine, 1976 – 1977 
  • Oxford University, British-American Heart Fellowship, Physiology, 1977 – 1979

Biosketch

As a principal investigator for over 35 years, Dr. Lederer has led his team to several key discoveries in calcium signaling, including the 1992 discovery of calcium sparks, the calcium signals in the heart that underlie all heart contractions, as well as all other muscles and excitable cells. Dr. Lederer’s discovery and subsequent study of calcium sparks has led to the development of a new area of research in local signaling events.

Earlier in his career, while studying at Yale, Dr. Lederer discovered and characterized the transient inward current, a finding that contributed to medicine’s understanding of the arrhythmogenic delayed after-depolarization (DAD) and early after-depolarization (EAD) events. He also pioneered the use of confocal imaging in cardiac research, developing a number of techniques and tools. He is a leader in developing and implementing novel imaging technologies relevant to muscle biology that capture real-time signals at a high temporal and spatial resolution.

Recent discoveries include a new calcium-dependent, mechano-chemical signaling pathway called X-ROS, which links calcium signaling to the cytoskeleton and contraction. Dr. Lederer is Professor of Physiology in the School of Medicine and Director of the Center for Biomedical Engineering and Technology.

Research/Clinical Keywords

Calcium Signaling, Calcium Sparks, Calcium-Dependent Arrhythmogenesis, Excitation-Contraction (EC) Coupling, Sodium Calcium Exchange Mechanisms, , X-ROS Signaling, , Cardiac Hypertrophy, Heart Failure, Cardiac Myocytes, Cardiac Mitochondria, Cardiac Cellular Physiology, Computational Biology, Super-Resolution Imaging, Confocal Imaging

Highlighted Publications

Brandenburg, S., Kohl, T., Williams, G.S., Gusev, K., Wagner, E., Rog-Zielinska, E.A., Hebisch, E., Dura, M., Didié, M., Gotthardt, M., Nikolaev, V.O., Hasenfuss, G., Kohl, P., Ward, C.W., Lederer, W.J., Lehnart, S.E. (2016) Axial tubule junctions control rapid calcium signaling in atria. Journal of Clinical Investigations. 126,3999-4015. PMC5096811

Lin, Q., Zhao, G., Fang, X., Peng, X., Tang, H., Wang, H., Jing, R., Liu, J., Lederer, W.J., Chen, J., Ouyang, K. 2016. IP3 receptors regulate vascular smooth muscle contractility and hypertension, JCI Insight 1, e89402. PMC5070959

Brandenburg, S., Kohl, T., Williams, G.S., Gusev, K., Wagner, E., Rog-Zielinska, E.A., Hebisch, E., Dura, M., Didié, M., Gotthardt, M., Nikolaev, V.O., Hasenfuss, G., Kohl, P., Ward, C.W., Lederer, W.J., Lehnart, S.E. (2016) Axial tubule junctions control rapid calcium signaling in atria. Journal of Clinical Investigations.  2016 Sep 19. [Epub ahead of print]

Zhao, G., Li, T., Brochet, D.X., Rosenberg, P.B., Lederer, W.J.  (2015) STIM1 enhances SR Ca2+ content through binding phospholamban in rat ventricular myocytes. Proceedings of the National Academy of Sciences USA.  112(34), E4792-801. PMC4553828

Previs, M.J., Prosser, B.L., Mun, J.Y., Previs, S. B., Gulick, J., Lee, K., Robbins, J., Craig, R., Lederer, W.J., Warshaw, D.M. (2015) Myosin-binding protein C corrects an intrinsic inhomogeneity in cardiac excitation-contraction coupling. Science Advances 1, e100205.  PMC4380226

Greiser, M., Kerfant, B.G., Williams, G.S., Voigt, N., Harks, E., Dibb, K.M., Giese, A., Meszaros, J., Verheule, S., Ravens, U., Allessie, M.A., Gammie, J.S., van der Velden, J., Lederer, W.J., Dobrev, D., Schotten, U. (2014) Tachycardia-induced silencing of subcellular Ca2+ signaling in atrial myocytes. Journal of Clinical Investigations 124, 4759-72.  PMC4347234

Additional Publication Citations

Research Interests

Awards and Affiliations

×