CORE-Header.jpg
Bookmark and Share

Fluorescence Sensing




New methods in fluorescence sensing together with new probes lead to practical uses of fluorescence in biotechnology and clinical chemistry.

Lifetime-Based Sensing

Lifetime-based sensing is an active area of research. The main advantage of lifetime-based sensing is the fact that intensity decay (fluorescence lifetime) is independent of signal intensity due to external factors like scattering and absorption.

Lifetime-based sensing was recently applied in high throughput screening (HTS) mode using two-photon excitation of Calcium Green.

Novel Sensing Methods

Recent advances like modulation and polarization sensing are rapidly applied to tissue and medical sensing, environmental sensing, bioimaging assays and high throughput screening (HTS).

Modulation sensing transform analyte-dependent intensity changes into a change in the low-frequency modulation signal.

Polarization sensing transforms an intensity changes into a change in polarization and/or angle rotation increasing sensitivity and enabling visual detection.

Both methods are internally calibrated by using a reference film immediately adjacent to the sample. Sensing instruments based on these technologies can be achieved with LEDs or even ambient light (sun light). These sensing methods are generic and can be used with any fluorophore/probe which displays an anlyte-dependent change in intensity.

Fluorescence Sensing
Complex Glucose-Glucokinase

Book Chapter

Optical Measurement of Bioprocess and Clinical Analytes Using Lifetime-Based Phase Fluorometry. (1995). In: Biosensor and Chemical Sensor Technology, Chapter 10. (K.R. Rogers, A. Mulchandani, W. Zhou, Eds.), American Chemical Society, 209th Natl. Meeting, Anaheim, CA.

References:

FS: Lifetime Based Sensing

  1. A Lifetime-Based Fluorescence Resonance Energy Transfer Sensor for Ammonia. Chang, Q., Sipior, J., Lakowicz, J.R. and Rao, R. (1995). Anal. Biochem., 232:92-97.
  2. Directly Modulated Diode Laser Frequency-Doubled in a KTP Waveguide as an Excitation Source for CO2 and O2 Phase Fluorometric Sensors. Holavanahali, R., Romauld, M., Carter, G.M., Rao, G., Sipior, J., Lakowicz, J.R., and Bierlein, J.D. (1996). J. Biomedical Optics, 1(1):124-130.
  3. Fluorescence Lifetime Characterization of Magnesium Probes: Improvement of Mg2+ Dynamic Range and Sensitivity Using Phase Modulation Fluorometry. Szmacinski, H. and Lakowicz, J.R. (1996). J. Fluoresc., 6(2):83-95.
  4. Single Quantum Well Light Emitting Diodes Demonstrated as Excitation Sources for Nanosecond Phase-Modulation Fluorescence Lifetime Measurements. Sipior, J., Carter, G.M., Lakowicz, J.R. and Rao, G. (1996). Rev. Sci. Instrum., 67(11):3795-3798.
  5. Phase Fluorometric Optical Carbon Dioxide Gas Sensor for Fermentation Off-Gas Monitoring. Sipior, J., Randers-Eichorn, L., Lakowicz, J.R., Carter, G.M. and Rao, G. (1996). Biotechnol Prog, 12:266-271.
  6. Fluorescence Lifetime-Based Sensing of Methanol. Chang, Q., Lakowicz, J.R. and Rao, G. (1997). Analyst, 122:173-177.
  7. Blue Light-Emitting Diode Demonstrated as an Ultraviolet Excitation Source for Nanosecond Phase-Modulation Fluorescence Lifetime Measurements. Sipior, J., Carter, G.M., Lakowicz, J.R. and Rao, G. (1997). Rev Sci Instrum, 68(7):2666-2670. (abstract)  
  8. Lifetime-Based Sensing of Glucose using Energy Transfer with a Long Lifetime Donor. Tolosa, L., Szmacinski, H., Rao, G. and Lakowicz, J.R. (1997). Analytical Biochemistry, 250:102-108.  
  9. A Fluorescence Lifetime-Based Solid Sensor for Water. Chang, Q., Murtaza, Z., Lakowicz, J. R., and Rao, G. (1997). Analytica Chim. Acta 350:97-104. (abstract)  
  10. Optical Assay for Glucose Based on the Luminescence Decay Time of the Long Wavelength Dye Cy5TM. Tolosa, L., Malak, H., Rao, G., and Lakowicz, J. R. (1997). Sensors and Actuators B 45:93-99.  
  11. Steam-Sterilizable, Fluorescence Lifetime-Based Sensing Film for Dissolved Carbon Dioxide. Chang, Q., Randers-Eichhorn, L., Lakowicz, J. R., and Rao, G. (1998). Biotechnol. Prog. 14:326-331. (abstract)  
  12. Potassium and Sodium Measurements at Clinical Concentrations Using Phase-Modulation Fluorometry, H. Szmacinski and J. R. Lakowicz (1999). Sensors and Actuators B 60:8-18.  
  13. On the Possibility of Long-Wavelength Long-Lifetime High-Quantum Yield Luminophores, J. R. Lakowicz, G. Piszczek, and J. S. Kang (2001). Anal. Biochem., 288:62-75.  
  14. Long-Wavelength Long-Lifetime Luminophores, B. P. Maliwal, Z. Gryczynski, and J. R. Lakowicz (2001). Anal. Chem., 73: 4277-4285.  
  15. Evaluation of Two Synthetic Glucose Probes for Fluorescence-Lifetime-Based Sensing, N. DiCesare, and J. R. Lakowicz (2001). Anal. Biochem., 294: 154-160  
Fluorescence Sensing 2 

FS: Protein Sensing

  1. Glucose Sensor for Low-Cost Lifetime-Based Sensing Using a Genetically Engineered Protein, Tolosa, L., Gryczynski, I., Eichhorn, L. R., Dattelbaum, J. D., Castellano, F. N., Rao, G., and Lakowicz, J. R. (1999). Anal. Biochem. 267:114-120.  
  2. The Fluorescence Emission of the Apo-Glucose Oxidase from Aspergillus niger as Probe to Estimate Glucose Concentrations, D'Auria, S., Herman, P., Rossi, M., and Lakowicz, J. R. (1999). Biochem. Biophys. Res. Commun. 263:550-553.  
  3. Pyruvate Kinase from the Thermophilic Eubacterium Bacillus Acidocaldarius as Probe to Monitor the Sodium Concentrations in the Blood, D'Auria, S., Rossi, M., Herman, P., and Lakowicz, J. R. (2000). Biophys. Chem. 84:167-176.  
  4. A Protein Biosensor for Lactate, D'Auria, S., Gryczynski, Z., Gryczynski, I., Rossi, M., and Lakowicz, J. R. (2000). Anal. Biochem. 282: in press.  
  5. A Thermophilic Apoglucose Dehydrogenase as Nonconsuming Glucose Sensor. D'Auria, Di Cesare, N., Gryczynski, Z., Gryczynski, I., Rossi, M., and Lakowicz, J. R. (2000). Biochem. Biophys. Res. Commun. 274:in press.  
  6. The Esterase From the Thermophilic Eubacterium Bacillus Acidocaldarius; Structural-Functional Relationship and Comparison with the Esterase From the Hyperthermophilic Archaeon Archaeoglobus Fulgidus, S. D’Auria, P. Herman, J. R. Lakowicz, F. Tanfani, E. Bertoli, G. Manco, and M. Rossi (2000). Proteins: Structure, Function and Genetics 40:473-481  
  7. Enzyme Fluorescence as a Sensing Tool: New Perspectives in Biotechnology, S. D’Auria and J. R. Lakowicz (2001). Curr. Opinion Biotechnology 12:99-104.
  8. Optical Determination of Glutamine Using a Genetically Engineered Protein, J. D. Dattelbaum and J. R. Lakowicz (2001). Anal. Biochem., 291:89-95.
  9. Multiphoton Ligand-Enhanced Excitation of Lanthanides, G. Piszczek, B. P. Maliwal, I. Gryczynski, J. Dattelbaum, and J. R. Lakowicz (2001), J. Fluoresc., 11(2): 101-107.  
Fluorescence Sensing 3

FS: Novel Sensing

  1. Low-Frequency Modulation Sensors Using Nanosecond Fluorophores, Lakowicz, J. R., Castellano, F. N., Dattelbaum, J. D., Tolosa, L., Rao, G., and Gryczynski, I. (1998). Anal. Chem. 70:5115-5121.  
  2. Anisotropy-Based Sensing with Reference Fluorophores, Lakowicz, J. R., Gryczynski, I., Gryczynski, Z., and Dattelbaum, J. D. (1999). Anal. Biochem. 267:397-405.  
  3. Polarization Sensing with Visual Detection, Gryczynski, I., Gryczynski, Z., and Lakowicz, J. R. (1999). Anal. Chem. 71:1241-1251.  
  4. Sensing of carbon dioxide by a decrease in photoinduced electron transfer quenching, Herman, P., Murtaza, Z., and Lakowicz, J. R. (1999). Anal. Biochem. 272:87-93.  
  5. Polarization Based Oxygen Sensor, Gryczynski, I., Gryczynski, Z., Rao, G., and Lakowicz, J. R. (1999). Analyst 124:1041-1044.  
  6. Polarization Based Sensing with a Self-Referenced Sample, Lakowicz, J. R., Gryczynski, I., Gryczynski, Z., Tolosa, L., Dattelbaum, J. D., and Rao, G. (1999). Appl. Spectroscopy 53:1149-1157.  
  7. Polarization-Based Sensing of Glucose Using an Oriented Reference Film, J. R. Lakowicz, I. Gryczynski, Z. Gryczynski, L. Tolosa, L. R.-Eichhorn, and G. Rao (1999). J. Biomed. Optics 4(4):443-449.
  8. Novel Fluorescence Sensing Methods for High Throughput Screening, J. R. Lakowicz, I. Gryczynski, and Z. Gryczynski (2000). J. Biomolecular Screening 5(3): in press. (abstract)  
  9. Simple Apparatus for Polarization Sensing of Analytes, Z. Gryczynski, I. Gryczynski, and Lakowicz, J. R. (2000). Opt. Eng. 39(8):in press.
  10. High Throughput Screening with Multi-Photon Excitation, Lakowicz, J. R., Gryczynski, I., and Gryczynski, Z. (1999). J. Biomolecular Screening, 4:355-361. (abstract)  
  11. Background Suppression in Frequency-Domain Fluorometry. Lakowicz, J. R., Gryczynski, I., Gryczynski, Z., and Johnson, M. L. (2000). Anal. Biochem. 277:74-85.  
  12. Fluorescence Lifetime Characterization of Novel Low-pH Probes, H.-J. Lin, P. Herman, J. S. Kang, and J. R. Lakowicz (2001). Anal. Biochem., 294: 118-125  

FS: Fluorescence Spectroscopy and Sensing in Tissues

  1. Fluorescence Lifetime Based Sensing in Tissues: A Computational Study. Burch, C. L., Lakowicz, J. R., and Sevick, E. M. (1995). Biophys. J., 68:1574-1582.
  2. Frequency-Domain Lifetime Measurements and Sensing in Highly Scattered Media. Szmacinski, H., and Lakowicz, J. R. (1996). Sensors and Actuators, 30:207-215.
  3. Frequency-Domain Lifetime Measurements and Sensing in Highly Scattering Media. Szmacinski, H. and Lakowicz, J.R. (1996). Sensors and Actuators, 30:207-215.
  4. Polarization Sensing of Fluorophores in Tissues for Drug Compliance Monitoring, Gryczynski, Z., Abugo, O. O., and Lakowicz, J. R. (1999). Anal. Biochem. 273:204-211.  
  5. Modulation Sensing of Fluorophores in Tissue: A New Approach to Drug Compliance Monitoring, O. O. Abugo, Z. Gryczynski, and J. R. Lakowicz (1999). J. Biomed. Optics. 4(4):429-442.
  6. Intensity Measurements in Scattering Media, J. R. Lakowicz, J. D. Dattelbaum, and I. Gryczynski (1999). Sensors and Actuators B 60:1-7.  
  7. Fluorescence Properties of Rhodamine 800 in Whole Blood and Plasma, Abugo, O. O., Nair, R., and Lakowicz, J. R. (2000). Anal. Biochem. 279:142-150.  
  8. Measurement of the Intensity of Long-Lifetime Luminophores in the Presence of Background Signals Using Phase-Modulation Fluorometry, Szmacinski, H., and Lakowicz, J. R. (1999). Appl. Spectroscopy 5:1490-1495.  

FS: Luminescence of Nanoparticles

  1. Luminescence Spectral Properties of CdS Nanoparticles, Lakowicz, J. R., Gryczynski, I., Gryczynski, Z., and Murphy, C. J. (1999). J. Phys. Chem. 103:7613-7620.  
  2. Time-Resolved Spectral Observations of Cadmium-Enriched Cadmium Sulfide Nanoparticles and the Effects of DNA Oligomer Binding, Lakowicz, J. R., Gryczynski, I., Gryczynski, Z., Nowaczyk, K., and Murphy, C. J. (2000). Anal. Biochem. 280:128-136.