Bookmark and Share

Ashkan  Emadi

Ashkan Emadi M.D., Ph.D.

Academic Title: Associate Professor
Primary Appointment: Medicine
Secondary Appointments: Pharmacology
Location: UMMC, S9D04C
Phone: (410) 328-2596
Fax: (410) 328-6896

Personal History:

Ashkan Emadi, M.D., Ph.D. joined the University of Maryland Marlene and Stewart Greenebaum Cancer Center Leukemia and Hematologic Malignancies Program in May, 2012, and is Associate Professor of Medicine, University of Maryland School of Medicine. He previously served as Medical Officer at the Division of Hematology Products (DHP), Office of Hematology and Oncology Products (OHOP), Center for Drug Evaluation and Research (CDER), United States Food and Drug Administration (FDA), and as Visiting Scientist at Division of Adult Hematology, Department of Internal Medicine, School of Medicine, Johns Hopkins University.

Dr. Emadi received his medical doctorate (M.D.) at Tehran University of Medical Sciences in 1996 and his Ph.D. in Organic Chemistry at the Illinois Institute of Technology in 2004. He developed novel methodologies for the regiospecific synthesis of multiple naphthoquinone derivatives related to the natural product conocurvone and exhibiting HIV integrase inhibitory activity. He was granted “Highest Standards of Academic Achievement Award” for this work, and holds the patent on the compounds and their synthesis. Following completion of his Ph.D., he completed his internship and residency in Internal Medicine at the University of Kentucky and the University of Cincinnati, respectively. During his Hematology/Oncology fellowship at Johns Hopkins University Sidney Kimmel Comprehensive Cancer Center, Dr. Emadi explored different metabolic pathways of cancer cells to develop targeted chemotherapeutic agents for the treatment of leukemia and other hematologic malignancies.

Research Interests:

Dr. Emadi's translational and clinical research is focused on exploiting and targeting cancer metabolism. He works on developing new drugs and novel targets for the treatment of acute leukemias and other blood cancers. Dr. Emadi has experience and in-depth understanding of the multiple aspects of cancer drug development including basic organic chemistry and molecular synthesis, in vitro and in vivo studies, and all phases of clinical trials as well as regulatory science.

In previous work, we have investigated the therapeutic targeting of mitochondria as a potential anti-leukemia strategy. We studied novel dimeric naphthoquinones as potential antitumor agents for both epithelial and hematologic malignancies. After a comprehensive mechanistic study by performing a chemical genetic screen in yeast, we demonstrated that dimeric naphthoquinones possess selective cytotoxic effects on androgen-independent and androgen-responsive prostate cancer cell lines, breast cancer cell lines with different metabolic signatures, and various leukemia cell lines. Significant increase in reactive oxygen species, decrease in oxygen consumption and ATP production, induced by dimeric naphthoquinone, suggest that oxidative stress and mitochondrial dysfunction are mechanisms by which these agents exert their cytotoxic effects. We are currently investigating generation of apoptosis, mitochondrial membrane depolarization, and caspase activation induced by dimeric naphthoquinones in leukemia cell lines that are resistant to chemotherapies. Through our collaboration with other groups, we are also studying the effects of different dimeric naphthoquinone analogues on mitogen-activated protein kinase (MAPK) and on extracellular signal-regulated protein kinases (ERK1/2), as well as on anti-apoptotic regulatory proteins, such as Mcl-1, and on pro-apoptotic proteins, such as BAX in acute myeloid leukemia cell lines.

Many tumors, including lymphomas and leukemias, display distinct metabolic alterations as enhanced uptake of glucose and glutamine, which is exploited for the detection of many cancers through PET scan. The understanding of molecular and oncogenic mechanisms behind how cancer cells reprogram their metabolism to compensate for increased energy demand and enhanced anabolism, cell proliferation and tissue invasion is beginning to emerge and their therapeutic implication is being explored. We have explored targeting various glycolytic enzymes controlled by MYC and the hypoxia-inducible factor 1 (HIF-1) in different leukemia and lymphoma models.

Our recent work has focused on targeting glutamine metabolism in acute myelogenous leukemia cells with isocitrate dehydrogenase gene (IDH-1 and IDH-2) mutations. Isocitrate dehydrogenases, IDH1 and IDH2, catalyze the conversion of isocitrate to α-ketoglutarate with the production of NADPH (reaction shown below in top line). Mutants of IDH1 and IDH2 found in glioma, glioblastoma, cartilaginous tumor, cholangiocarcinoma of intrahepatic origin, and acute myelogenous leukemia converts α-ketoglutarate (2-oxoglutarate) to 2-hydroxyglutarate (a potential tumor biomarker) with the consumption of NADPH (reaction shown below on bottom line). The primary source for α-ketoglutarate under this condition is shown to be extracellular glutamine. We are exploring different pathways and methods to target leukemic cells with this distinct metabolic feature.

Recently, it has been demonstrated that IDH1/2 mutations associate with specific cytosine methylation, and aberrant DNA hypermethylation is the dominant feature of IDH1/2-mutant AMLs. Based on recent findings, the scheme below demonstrates the chemical reactions involve in DNA cytosine demethylation. 2HG (produced by IDH1/2-mutant AMLs) is a competitive inhibitor of multiple αKG-dependent histone demethylases, prolyl hydroxylases, and TET hydroxylases.

Expression of IDH1/2 mutants and loss of TET2 increase expression of stem cell markers and impaired myeloid differentiation. These data indicate that IDH mutation is at the crossroads of tumor metabolism and epigenetics. In the laboratory and in the clinic, we are working to discover novel therapeutic strategies for treatment of patients with this unique form of AML.

Clinical Speciality:

  • Acute Myelogenous Leukemia
  • Acute Lymphoblastic Leukemia
  • Myelodysplastic Syndromes
  • Myeloproliferative Neoplasms
  • General Hematology


Selected Publications

Emadi A, Karp JE. The Clinically Relevant Pharmacogenomic Changes in Acute Myelogenous Leukemia. Pharmacogenomics. 2012, in press.

Emadi A, Sadrzadeh H, Patal P, Burns KH, Duffield A, Ballen KK, Amrein PC, Attar EC, Smith BD, Fathi AT. History of autoimmunity to predict clinical response to DNA methyltransferase inhibitors (DNMTI) in myelodysplastic syndromes (MDS), and MDS-derived acute myeloid leukemias (AML). Journal of Clinical Oncology 2012; 30 (suppl; abstr 6629).

Emadi A. Bidirectional Dance of Glutamine. Science Translational Medicine. 2012; 4 (118): 118ec12.

Emadi A. Cancer’s Food Network. Science Translational Medicine. 2011; 3 (98): 98ec139.

Emadi A. A Curious Case of Cellular Metabolism. Science Translational Medicine. 2011; 3 (90): 90ec103.

Emadi A, Le A, Harwood CA, Stagliano KW, Kamangar F, Ross AE, Cooper CR, Dang CV, Karp JE, Vuica-Ross M. Metabolic and Electrochemical Mechanisms of Dimeric Naphthoquinones Cytotoxicity in Breast Cancer Cells. Bioorganic and Medicinal Chemistry. 2011; 19(23): 7057-7062.

Ross AE, Emadi A, Marchionni L, Hurley PJ, Simons BW, Schaeffer EM, Vuica-Ross M. Dimeric naphthoquinones represent a novel class of compounds with prostate cancer cytotoxicity. British Journal of Urology International. 2011; 108(3): 447-454.

Emadi A. Dissecting “Normal” in Leukemia. Science Translational Medicine. 2011; 3 (114): 114ec207.

Emadi A. Leukemia: The Master Vampire. Science Translational Medicine. 2011; 3 (110): 110ec189.

Emadi A. At the Crossroads: Tumor Metabolism and Epigenetics. Science Translational Medicine. 2011; 3 (82): 82ec68.

Emadi A, Ross AE, Cowan KM, Fortenberry YM, Vuica-Ross M. A Chemical Genetic Screen for Modulators of Asymmetrical 2,2´-Dimeric Naphthoquinone Cytotoxicity in Yeast. PLoS One. 2010 May 26; 5(5):e10846.

Emadi A, Gore SD. Arsenic trioxide - An old drug rediscovered. Blood Review. 2010; 24(4-5):191-199.

Antonarakis ES, Emadi A. Ruthenium-based Chemotherapeutics: Are they ready for prime time? Cancer Chemotherapy and Pharmacology. 2010; 66(1): 1-9.

Emadi A, Jones RJ, Brodsky RA. Cyclophosphamide and Cancer: Golden Anniversary. Nature Reviews Clinical Oncology. 2009; 6(11): 638-647.

Ghosh N, Emadi A. From Orbital Hybridization to Chemotherapeutic Neutralization. Blood. 2009; 113 (24): 6262.

Emadi A, Brodsky RA. Successful discontinuation of anticoagulation following eculizumab administration in paroxysmal nocturnal hemoglobinuria. American Journal of Hematology. 2009; 84(10): 699-701.

Segal JB, Brotman DJ, Necochea AJ, Emadi A, Samal L, Wilson LM, Crim MT, Bass EB. The Predictive Value of Factor V Leiden and Prothrombin G20210A in Adults with Venous Thromboembolism and in Family Members of Those with a Mutation: A Systematic Review of the Literature. JAMA. 2009; 301(23): 2472-2485.

Stagliano KW, Emadi A, Lu Z, Malinakova HC, Twenter B, Yu M, Holland LE, Rom AM, Harwood JS, Amin R, Johnson AA, Pommier Y. Regiocontrolled synthesis and HIV inhibitory activity of unsymmetrical binaphthoquinone and trimeric naphthoquinone derivatives of conocurvone. Bioorganic and Medicinal Chemistry. 2006; 14(16): 5651-5665.

Stagliano KW, Lu Z, Emadi A, Harwood JS, Harwood CA. Effect of Methoxyl Group Position on the Regioselectivity of Ammonia Substitution Reactions Involving 3,3'-Dichloro-2,2'-binaphthoquinones. Journal of Organic Chemistry. 2004; 69(15): 5128-5131.

Emadi A, Harwood JS, Kohanim S, Stagliano KW. Regiocontrolled Synthesis of the Trimeric Quinone Framework of Conocurvone. Organic Letters. 2002; 4(4): 521-524.